LISTER BASE

Laurent Graignic le 05/02/2018

OBIJECTIFS :

1) Notifier tout changement de configuration Oracle (Orchestré ou non)
intervenu sur des groupes de VM.

2) Fournir un référentiel d’incréments utilisables, (Lettres encore disponibles
entre A et Z) pour chaque nom d’instance Oracle (Utilisé dans le cadre ou

non de |'orchestration).
3) Pouvoir supprimer les informations obsoletes

DESIGN DE LA SOLUTION :

REMOVE
M ref.

Get1Vmlnsta
ncesList

3 actions possibles :

1) UPDATE (Pour détecter et notifier les changements)
2) REMOVE (Pour retirer les informations d’une ou plusieurs VM obsolétes)
3) REMOVE_ALL (Pour nettoyer la base sans connaitre sa composition)

Action « UPDATE »
OUTPUTS :

Les notifications de changement de configuration Oracle sont fournies dans
I’Output -

(= Qutput
(= DIFF (LongString)

EXEMPLE :

1

Jﬁ powered by ace :

{"toDel”:["s@@v19975744.D12345DP10

.specs |DATE;38/61/2018"
,"s88v19975744 QICOBPNP1e. specs | DATE
;30/01/2018","s0@v19975744
.QICOBPTP18.specs|DATE;38/81/2818"
,"s88v19975747 .QICOBPNS18. specs | DATE
538/01/2018","s8ev19975747

.QICOBPTP18.specs |DATE;31/81/2018"
,"508v19975744.QICOBPNP18. specs | DATE
;31/e1/2018","s8@v19975744

] B

-+

object » toAdd » 3

v object {2}

¥ toDel [5]

-]

: s8ev19975744.D12345DP18.

a8 v toAdd [5]

specs |DATE;38/01/20813

1 : s8@v19975744.QICOBPNP1e. DATE;30/01/2018
_QICOBPTS10. specs | DATE; 38/01/2018" | =oev Q specs| /e1/
,"toAdd" : ["seev19975747 . QICOBPTS10 2 : s8@v19975744.QICOBPTP1@. specs |DATE;38/01/2018
.specs |DATE;31/81/20818")
- =500v19075747 .QICOBPNS18. specs | DATE 3 : s8ev19975747.QICOBPNS1E. specs |DATE ;30/01/2018
;31/e1/2018", "sB@V19975744 4 @ s@ev19975747.QICOBPTS16. specs |DATE;30/01/2018

. @ : s8ev10975747.QICOBPTS1@.specs|DATE;31/61/2018
.D12345DP18. specs |DATE; 31/01/2018"]}

1 : se8v19975747.QICOBPNS18. specs |DATE;31/681/2018

2 @ se8v19975744.QICOBPTP18. specs |DATE;31/681/2018

3 : se@v19975744.QICOBPNP18. specs |DATE; 31/61/2018

4 : sB@v10975744.D12345DP10. specs |DATE;31/61/2018

Le référentiel pour les incréments disponibles est fourni dans I'output

(= Qutput
(% DIFF (LongString)
(= Json_lncrements (LongString)

>

EXEMPLE :

3+

1

Noter, a droite, le nombre de lettres disponibles par instance (25 et 23) et leurs valeurs a

{r"unigInstance™:{"D12345":["A","B","C"
. . E", "F", "E", YHTL, I, MM, UKL, LT, M
S B - R e T T

"1, "QICOBP" : ["A","B"
L UHE, T, MO, K", "L"
LR, TSN, U, T, W

woom
»

(LI
¥

H

"P","Q

", "‘l"" "z
F G

P Q

gauche.

object » uniginstance » QICOBP »

¥ object {1}

¥ unigInstance {2}

» D12345 [25]

» QICOBP [23]

1) Stocker d’une fois sur I'autre les informations de configuration Oracle pour
pouvoir ensuite les comparer entre elles.

2) Stocker I'Output « Json_Increments » pour le mettre a disposition d’autres
process sans passer par LISTER _BASE.

_ Utiliser la capacité de stockage permanant existant dans les
« Process App Settings » de BPM:

' ' |Ei Process App Settings

Overview lWl Servers

Environment VYariables

Key “ Default
existinglson_DEList 1
Json_lncrements 1

On voit ci-dessus, les deux variables qui sont mises a jour par le process a
chaque fin d’exécution.

Note : L’affichage des valeurs initiales « {} » reste inchangé suite a leur mise a jour par le
process.

Implémentation au sein du process :

. tw.env.update (tw.system.model.env.existingJson DBList, JSON.stringify(jsonPreviousScan), true)

. tw.env.update (tw.system.model.env.Json_Increments, tw.local.Json_ Increments, true)

no '\Q —yes—#

! Oﬁetmel_r;tsta . \Q — yes SHIFT vm
NCesLI

no more
Instance ¥

g g Update
Select .| Getlnstance] P DEList
instance " Details son_1 !
@—

Cette double boucle est alimentée par I'input « vmList » :

4 = Input
4 = wmlist (S5HCredentials) (List)
@ hostname (5tring)
@ userMame (String)
@ password (String)
@ privateKey (String)

« vmList » est une liste de « SSHCredentials ». Autrement dit, une liste de VMs.

La premiere tache, « GetlVminstancesList », fournit la liste des instances hébergées
dans la VM courante.

Mapping de « GetlVminstancesList» :

= Input Mapping ‘5, = Output Mapping i3
tw.local.currentVM & o currentyi (55HCreden... instancesList (String) =° | tw.local.currentInstanceslist &
tw.local.actionReport @L (=5 actionReporti(list of... actionReporti(list of... [=51 tw.local.actionReport @L

« Select instance » sélectionne ensuite I'instance courante et la passe en input de

« Getlnstance Details » qui en fournit les détails. Ces détails sont ensuite passés en
input de «Update json_DBList» qui les ajoute dans I'objet JSON currentlJson_DBList.
Celui-ci est alors réinjecté sous forme « string » dans le circuit en attente du traitement
de lI'instance suivante. Quand la derniere instance est traitée, une autre VM devient la
VM courante, et ainsi de suite. A la derniere instance de la derniere VM, on sort de la
boucle pour passer aux calculs.

Détails des appels ssh

Pour chacune des VM, la présence du fichier tar (Qui contient les scripts Oracle) est
testée. En cas d’absence, la VM téléchargera le tar en https depuis un repository web
(wget) puis le décompressera.

Une fois les scripts présents sur la VM, celui permettant de lister les instances est lancé.
Le stdOut est parsé localement sur la VM puis la liste obtenue est mise en forme dans

currentinstance(string) selon la forme:
«INSTANCE1l, INSTANCE2 , INSTANCE3»

7 commandes bash par instance sont réparties dans 3 connexions ssh :

1) Check tar, download tar et decompress tar
2) Getinstances List
3) Get instances details

La connexion ssh de « Get instances details », réunie trois commandes lancées a la suite:
e db_show_parameters.ksh
e db_service_name.ksh
e db_user.ksh

Les informations sont alors préfixées localement selon ce format:

USERS:APPQOSSYS

USERS:AUDSYS

USERS : DBSNMP

SPECS: use_single log writer;TRUE
SPECS:utl file dir;
SPECS:workarea_size policy;AUTO
SPECS:xml_db_events;enable
SERVICES:QICOBPNS1
SERVICES:QICOBPNS10

La tache suivante dispache les données de chaque catégorie dans 3 variables
BPM privées (string), ou elles se trouvent sérialisées avec le séparateur « | »
(Qui est un caractere toujours absent des données) :

var specsTAB = [] ; var usersTAB = [] ; var servicesTAB = []

= users I:Strlng] stdOutTAB. forEach (function (line) {
if (line.match(/"SPECS:/)) { specsTAB.push(line.replace(/"SPECS:/,"")) }
|;::| 5pec5 {St”ng:] if (line.match(/"USERS:/)) { usersTAB.push(line.replace(/"USERS:/,"")) }
if (line.match (/"SERVICES:/)) { servicesTAB.push(line.replace (/"SERVICES:/,"")) }

2 services (String) }
tw.local.specs = specsTAB.join("|")
tw.local.users = usersTAB.join("|")
tw.local.services = servicesTAB.join (" |")

Ce fonctionnement optimise la vitesse de collecte des informations.

Le principe est de parser le json(string) courant pour en faire un objet. D’y adjoindre les données de
I'instance courante, puis de le « stringifyer » a nouveau pour le réinjecter au format string dans le

circuit.

"o g

Instarjce ¥

var users = [] ; if(tw.local.users != ""){ users = tw.local.users.split("|") } ; log.info(users.length+" users")

var specs = [] ; if(tw.local.specs != ""){ specs = tw.local.specs.split("|") } ; log.info(specs.length+" specs")

var services = [] ; if(tw.local.services != ""){ services = tw.local.services.split("|") } ; log.info(services.length+"
services")

var vmName = tw.local.currentVM.hostname

var currentJsonDBList = JSON.parse (tw.local.currentJsonDBList)

var instanceName = tw.local.currentInstance

if (!currentJsonDBList["DBList"]) {
currentJsonDBList["DBList"] = {}

}

if (!currentJsonDBList["DBList"] [vmName]) {
currentJsonDBList["DBList"] [vmName] = {}

}

if (!currentJsonDBList["DBList"] [vmName] [instanceName]) {

currentJsonDBList["DBList"] [vmName] [instanceName] = {}
}
currentJsonDBList ["DBList"] [vmName] [instanceName] ["users"] = users
currentJsonDBList ["DBList"] [vmName] [instanceName] ["specs"] = specs
currentJsonDBList ["DBList"] [vmName] [instanceName] ["services"] = services

tw.local.currentJsonDBList = JSON.stringify(currentJsonDBList)

object » DBList » s00vI9975744 » QICOBPTP10 » services = 6
v object {1}
¥ DBList {2}
v s68v19075744 (3}
» D12345DP18 {2}
¥ QICOBPNP1G {2}
» users [19]
» specs [413]
» services [8]
v QICOBPTP18 {2}
» users [19]
» specs [413]
v services [8]
@ : QICOBPTP1
1 : QICOBPTPle
2 QICOBPTP1@é_DGMGRL
3 : QICOBPTP1_DGE
4 : QICOBPTP1_DGMGRL
5 : Q_ICOBP_080e@ 03
6 :(Q_ICOBP_ 90808 83 BATCH

7 :Q_ICOBP_0@ees_o3_TP

» s88v19975747 {2}

Cette structure est adaptée a la finalité recherchée (Détection de différences entre 2 arbres de références) car les
données de dernier niveau (services, users, specs) peuvent étre exprimées par leur chemin, ce dernier pouvant
constituer une référence unique a chaque donnée.

Exemple avec la data ci-dessus surlignée en jaune : On voit que
DBList.s00vI9975744.QICOBPTP10.specs[6] = «Q_ICOBP_00000_03_BATCH»
Or, ceci peut facilement étre transformé en :
DBList.s00vI9975744.QICOBPTP10.specs | Q_ICOBP_00000_03_BATCH

Ou l'indice [6] qui était la seule référence flottante du chemin est remplacée par le caractére « | » suivi de la data.
L’ensemble constituant une référence unique a la data.

De ce fait, il est possible d’extraire toutes les données avec leur référence unique sous la forme d’une simple liste.

L’étape suivante consistant donc a comparer deux listes : Celle issue du json stocké précédemment et la liste issue
du json courant (résultat de la collecte).

Deux fonctions restent alors a mettre en ceuvre :

1) Transformer un json en liste
2) Comparer deux listes

Elles sont implémentées dans « CALCUL DIFF » :

= CALCUL
- \ e -
0 ‘O yes—# DIFF
no are
Mz

=

\Q —yes SHIFT vm
no more
Instance 7

g Update
Json_DBList
1

Get1Vminsta
ncesList

Getlnstance
Details

Select
instance

TRANSFORMER UN JSON EN LISTE : (Avec le parameétre « inPath » limitant le scope de parcours de I'arbre)
(Fonction récursive basée sur I’évaluation d’expressions réguliéres et I’évaluation d’un nom d’objet JSON)

var OUT = []

function LookForID (JsonObj, finalKey,deep,inPath) (
for (var ELT in eval (JsonObj)) {

var PATH = JsonObj+" [\""+ELT+"
if (typeof eval (PATH) != "object") {
if (ELT.match (eval(finalKey)) && PATH.match (eval(inPath))) {
var LINE = JsonObj.replace(/\"]1/g,"").replace(/\[\"/g,".") .replace(/"json.*\.DBList\./,"")+"|"+eval (PATH)
OUT.push (LINE)
continue
}
}else{ if (deep){ LookForID (PATH,finalKey,deep,inPath) } else { continue } }

}

return OUT

UTILISATION de la fonction LookForID (JsonObj, finalKey,deep,inPath)

. JsonObj (string) : Nom de I'objet json a traiter

. finalKey (string) : UNUSED (Regexp filtrant sur les valeur finales) valeur =« /A.*$/ »

. deep (booleen) : Descendre ou pas dans I'aborescence de la structure

. inPath (string) : Le parametre « inPath » ne sera utilisé que sur le json stocké. (De facon a se limiter aux VM aussi présentes dans la

collecte courante). En effet le « json stocké » contient les informations relatives a toutes les VM déja scannées auparavant. (Depuis le début de
I’exploitation du BPM LISTER_BASE)

En revanche, le filtre « inPath », n’est pas exploité avec le json de la collecte courante (Sa valeur sera seulement positionné a « /A..*$/ »).

Le ARRAY résultant, pour chaque json, sera de la forme :

DBList.s00vI9975744.QICOBPTP10.specs|Q_ICOBP_00000_03_BATCH
DBList.s00vI9975744.QICOBPTP10. specs|Q_ICOBP_00000_04_BATCH
DBList.s00vI9975744.QICOBPTP10.users|oracle_1
DBList.s00vI9975744.QICOBPTP10.users | oracle_2
DBList.s00vI9975744.QICOBPTP10.services | DeNettoyageDesChiottes

COMPARER DEUX LISTES : (En jaune la partie efficace de I'algorithme) - Le reste du code est du contrdle.

function onlyUnique (value, index, self) { return self.indexOf (value)
function singleton(value, index, self) { return self.indexOf (value)
function multiples(value, index, self) { return self.indexOf (value)
function ListDiff (last,next) {

self.lastIndexOf (value) }
self.lastIndexOf (value) }

var toKeep = [] ; var toAdd = [] ; var toDel = [] ; var ERR=false
if (typeof last !== "object" || isNaN(last.length)){ Notif("calDiff: \"last\" bad argument",false) ; ERR=true }
if (typeof next !== "object" || isNaN(next.length)){ Notif("calDiff: \"next\" bad argument",false) ; ERR=true }
var lastMultiple = last.filter(multiples)
if (lastMultiple.length != 0) {
Notif ("Warning: previous scan has multiples :"+lastMultiple.join(" "), false) ; ERR=true
}else{ last = last.filter (onlyUnique) }
var nextMultiple = next.filter (multiples)
if (nextMultiple.length != 0) {
Notif ("Warning: current scan has multiples :"+nextMultiple.join(" "),false) ; ERR=true
}else{ next = next.filter (onlyUnique) }
if (!ERR) {

toKeep = toKeep.concat (last,next).filter (multiples)
toDel = toDel.concat (toKeep,last).filter (singleton)
toAdd = toAdd.concat (next,toKeep) .filter (singleton)

.filter (onlyUnique)

log.info ("DIIF: toAdd = "+toAdd.length+" elt ; toDel "+toDel.length+" elts")
var DIFF = JSON.stringify({"toDel":toDel," d" :toAdd})
return DIFF

}else{ return "" }

Princige . Soit List1 et List2, deux listes a comparer

List1=ABCD (last)
| | -> CetD sont communs aux deux listes
List2 = CDEF (next)
Pour passer de List1 a List2, A et B sont a supprimer de Listl ; E et F sont a ajouter a List1

Calcul intermédiaire : Trouver « toKeep » (C et D):
toKeep = toKeep.concat(last,next).filter (multiples) .filter (onlyUnique)

toKeep.concat (last, next) vaut «ABCDCDEF»
«ABCDCDEF».filter (multiples) vaut «CCDD»
«CCDD».filter(onlyUnique) vaut «CD» OK

Trouver « toDel » (A et B)
toDel = toDel.concat (toKeep,last) .filter (singleton)

toDel.concat (toKeep, last) vaut «CDABCD»
«CDABCD».filter(singleton) vaut «AB» OK

Trouver « toAdd » (E et F)
toAdd = toAdd.concat (next, toKeep) .filter (singleton)
toAdd.concat (next, toKeep) vaut «CDEFCD»

«CDCDEF».filter(singleton) vaut «EF» OK

Transformation en liste du scan courant

var jsonDBList = JSON.parse(tw.local.currentJsonDBList)
OUT = [] ; var currentScan = LookForID("jsonDBList[\"DBList\"]","/..*/" true,"/..*/")
Notif ("currentScan is "+currentScan.length+" long",false)

Fabrication de la Regexp filtrant sur les noms de VM présents dans les credentials

var vmNamesRegexp = tw.local.vmNames.split(",")
vmNamesRegexp = vmNamesRegexp.join("\..*$|”.*DBList....").replace(/"/,"/”.*DBList....").replace(/$/,"\..*$/"

Transformation en liste de la partie du PreviousScan se rapportant aux VM communes

var jsonPreviousScan = JSON.parse (tw.env.existingJson DBList)
OUT = [] ; var PreviousScan = LookForID ("jsonPreviousScan[\"DBList\"]","/..*/", true,vmNamesRegexp)
Notif ("PreviousScan is "+PreviousScan.length+" long", false)

Output DIFF : Si (no error)-> Copy infoVM_of _current sur infoVM_of _previous

tw.local .DIFF = ListDiff (PreviousScan,currentScan)

if (tw.local.DIFF != ""){
Notif ("############ END OF CALCUL ############", true) ; log.info (tw.local.DIFF) ; log.info("")
var vmNames = tw.local.vmNames.split(",")

for(var I in vmNames) {
var vmName = vmNames[I]
delete jsonPreviousScan["DBList"] [vmName]
jsonPreviousScan ["DBList"] [vmName] = jsonDBList["DBList"] [vmName]
}
tw.env.update (tw.system.model.env.existingJson_DBList, JSON.stringify(jsonPreviousScan), true)
Notif ("Updating the previous scan with the current one: SUCCEED", true)
}else{
Notif ("UPDATE aborted", true)
var lgth = tw.local.actionReport.listLength
tw.local.errors = tw.local.actionReport.listToNativeArray().slice(lgth-10, lgth).join(",")

Derniére étape (Communes & toutes actions): «update increment ref», fourni une mise &
jour des incréments disponibles pour chaque pentagramme.

Il s’agit de lister tous les noms d’instances présentes dans

« existingJson_DBList » (Fraichement mis a jour par 'update), et d’en extraire la partie
correspondant aux « noms uniques d’instance » qui possedent un incrément.

Un incrément est une lettre de I'alphabet.

La création de nouvelles instances rattachées a des instances existantes nécessite I'emploi
du méme pentagramme, mais associé a un nouvel incrément.

L’algorithme est le suivant :

function onlyUnique (value, index, self) { return self.indexOf (value) === index }
function singleton(value, index, self) { return self.indexOf (value) === self.lastIndexOf (value) }

var jsonDBList = JSON.parse(tw.env.existingJson_DBList)

var unigInstances = [] ; var unigInstancesLettre = []
var instances = []

for (var vm_name in jsonDBList["DBList"]) {
var vms = jsonDBList["DBList"] [vm name]
for (var inst_name in vms) {
var unigInstancelettre = inst_name.split("",7).join("") ; unigInstancesLettre.push (unigInstancelettre)
var unigInstance = unigInstancelLettre.split("",6).join("") ; unigInstances.push(unigInstance)

}

unigInstances = uniglInstances.filter (onlyUnique)
unigInstancesLettre = unigInstancesLettre.filter (onlyUnique)

var alfaB = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O"," "P",""Q","R","S","T","U","V", "W, "X","Y","Z"]

function returnIndice (fitre,data) {
var TAB = []
var REGEXP = eval("/(""+fitre+") ([A-2]5)/")
TAB = REGEXP.exec (data)
if (TAB) {return TAB[2] }else{return ""}
}

var Json_Increments = {}
Json_Increments["unigInstance"] = {}
var Lettres = []

for(var I in uniqgInstances) {
var unigInstance = uniqgInstances[I]
for(var II in unigInstancesLettre) {
var unigInstancelettre = uniqInstancesLettre[II]
var LettreToAdd = returnIndice (unigInstance,unigInstancelettre)
if (LettreToAdd != ""){ Lettres.push(LettreToAdd) }
}
var availableIncrements = alfaB.concat (Lettres).filter (singleton)
Json_Increments["unigInstance"] [unigInstance] = availableIncrements

}

tw.local.Json_Increments = JSON.stringify(Json_Increments)
tw.env.update (tw.system.model.env.Json_Increments, tw.local.Json_Increments, true)

_ (vmNamel,[vmName?2,...])

Pour cette action, I'input est une suite de noms de VM passée a
vmNamesToDel(string) :

Yariables

S Variables
S5 Local
= lnput
= wmlist (S5HCredentials) (List)
= ACTIOM (String)
= vmMNamesToDel (String)

Le format est : « vmNamel, vmName2,... »

Aucun autre input n’est requis pour cette action. Le fonctionnement est le
méme qu’avec REMOVE sauf que la liste des noms de VM est générée a partir
de la base « existinglJson_DBList » elle-méme et ne provient pas d’un input.

Ces deux actions sont implémentées dans « REMOVE VM »

= REMOVE Epdate
WM increment
ref, End

no 5 <> —yes
no jore
VM[?
=
VO GetlVmlnsta \<>—.-E.- SHIFT vm
neesList o
actign / no more
Errgr Instance 7
=
Update
Get[l}rz:lr;ce Json_DBList
var vmNames = []
if (tw.local .ACTION == ”REMOVEiALL”){
var vmNames = [] ; if(tw.local.vmNames != ""){ wvar vmNames = tw.local.vmNames.split(",") }
lelse(
var vmNames = tw.local.vmNamesToDel.split(",")
}
log.info("") ; Notif ("Deleting \""+vmNames.join (" and ")+"\" from database'", true)
var jsonPreviousScan = JSON.parse (tw.local.existingJson DBList)

for (var I in vmNames) {
var vmName = vmNames[I]
delete jsonPreviousScan["DBList"] [vmName]
}
Notif ("\""+vmNames.join (" and ")+"\": deleted")
tw.env.update (tw.system.model.env.existingJson DBList, JSON.stringify(jsonPreviousScan), true)
Notif ("existingJson DBList has been updated", true)

Gestion des erreurs

Le principe de I'actionReport est implémenté a toutes les étapes du BPM LISTER_BASE.

tw.local.actionReport = new tw.object.listOf.toolkit.TWSYS.String();

Il est enrichi du détail de chaque action réalisée. Lors d’une erreur, cette erreur est
incorporée au rapport. Celui-ci est tronqué aux 10 dernieres lignes et ces lignes sont
sérialisées dans le message texte assigné a I'erreur.

Deux exemples de rapport complet :

REMOVE s00vI9975744

<variable type="String[]">
<item type="String"><![CDATA["LISTER BASE" IS STARTING]]></item>
<item type="String"><![CDATA[existingJson_DBList exists: vmNames = "s00vI9975747"]]></item>
<item type="String"><![CDATA[1/2/2018 13:56:29:723: inputs are OK for: REMOVE s00vI9975744]]></item>
<item type="String"><![CDATA[1/2/2018 13:56:29:733: Deleting "s00vI9975744" from database]]></item>
<item type="String"><![CDATA["s00vI9975744": deleted]]></item>
<item type="String"><![CDATA[1/2/2018 13:56:29:773: existingJson_DBList has been updated]]></item>
<item type="String"><![CDATA[1/2/2018 13:56:29:782: Calculating updated increments]]></item>
<item type="String"><![CDATA[1/2/2018 13:56:29:826: updating the increment referential]]></item>
</variable>

UPDATE [SSHcredentielOf(sO0vI9975747,s00vI9975744,5s00vI9975747)]

<variable type="String[]">

<item type="String"><![CDATA["LISTER BASE" IS STARTING]]></item>

<item type="String"><![CDATA[existingJson_DBList exists: vmNames = "s00vI9975747"]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:3:626: inputs are OK for: UPDATE s00vI9975747,s00vI9975744,s00vI9975747]]></item>

<item type="String"><![CDATA[Checking ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar on sO0vI9975744:]]></item>

<item type="String"><![CDATA[Starting "wget Tar If Needed"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975744(passwd=*******]Xg) cmdLine = "if test -f ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar ; then true ; else wget
http://kickstart-dev:8000/RedHat_7.0AS/x86_64/Src/RefPack_LIN/ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar && tar xf ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar ;
fi"]]></item>

<item type="String"><![CDATA[Starting "List Instances"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975744(passwd=*******1Xg) cmdLine = "/tmp/install_oracle/ksh/db_instance.ksh list | sed
's/A *ORACLE_SID=\(.......... \).*$/\1/"]]></item>

<item type="String"><![CDATA[GetVMinstancelList SUCCEED: D12345DP10,QICOBPNP10,QICOBPTP10]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:7: currentInstance D12345DP10 selected to be processed. 2 remaining]]></item>

<item type="String"><![CDATA[Starting "GetVMinstancelList"]]></item>

<item type="String"><![CDATA[Starting "RemoteSSH for D12345DP10 instances details"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975744(passwd=*******]Xg) cmdLine = "INST=D12345DP10;cd /tmp/install_oracle/ksh;. /db_user.ksh -sid SINST -list|awk '$2~/[0-
9][0-9]*/ {print "USERS:"$1}'&8& ./db_show_parameters.ksh -sid SINST -all |awk 'S1~/A[A;][A;]*;.*/{print "SPECS:"$1}'&& ./db_service_name.ksh -sid SINST -list|awk {print
"SERVICES:"$1}"]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:11 -> stdOut returned a total of 438 elements]]></item>

<item type="String"><![CDATA[FOUND on D12345DP10: 19 users + 413 specs + 5 services]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:11: currentinstance QICOBPNP10 selected to be processed. 1 remaining]]></item>

<item type="String"><![CDATA[Starting "GetVMinstancelList"]]></item>

<item type="String"><![CDATA[Starting "RemoteSSH for QICOBPNP10 instances details"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975744(passwd=*******1Xg) cmdLine = "INST=QICOBPNP10;cd /tmp/install_oracle/ksh;./db_user.ksh -sid SINST -list|awk '$2~/[0-
9][0-9]*/ {print "USERS:"$1}'&8& ./db_show_parameters.ksh -sid SINST -all |awk 'S$1~/A[A;][A;1*;.*/{print "SPECS:"$1}'&& ./db_service_name.ksh -sid SINST -list|awk {print
"SERVICES:"$1}"]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:15 -> stdOut returned a total of 441 elements]]></item>

<item type="String"><![CDATA[FOUND on QICOBPNP10: 19 users + 413 specs + 8 services]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:15: currentinstance QICOBPTP10 selected to be processed. 0 remaining]]></item>

<item type="String"><![CDATA[Starting "GetVMinstancelList"]]></item>

<item type="String"><![CDATA[Starting "RemoteSSH for QICOBPTP10 instances details"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975744(passwd=*******1Xg) cmdLine = "INST=QICOBPTP10;cd /tmp/install_oracle/ksh;./db_user.ksh -sid SINST -list|awk '$2~/[0-
9][0-9]*/ {print "USERS:"$1}'&8& ./db_show_parameters.ksh -sid SINST -all |awk 'S1~/A[A;][A;]%;.*/{print "SPECS:"$1}'&& ./db_service_name.ksh -sid SINST -list|awk {print
"SERVICES:"$1}"]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:19 -> stdOut returned a total of 441 elements]]></item>

<item type="String"><![CDATA[FOUND on QICOBPTP10: 19 users + 413 specs + 8 services]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:19: QICOBPTP10 has been Processed. Switch to next VM (s00vI9975747)]]></item>

<item type="String"><![CDATA[Checking ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar on s00vI9975747:]]></item>

<item type="String"><![CDATA[Starting "wget Tar If Needed"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975747(passwd=*******1051) cmdLine = "if test -f ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar ; then true ; else wget
http://kickstart-dev:8000/RedHat_7.0AS/x86_64/Src/RefPack_LIN/ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar && tar xf ORACLE_12102_1.60.1_LINUX_GEN_BE_FR_IT.tar ;
fi"]]></item>

<item type="String"><![CDATA[Starting "List Instances"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975747(passwd=*******1051) cmdLine = "/tmp/install_oracle/ksh/db_instance.ksh list|sed
's/A *ORACLE_SID=\(.......... \).*$/\1/"]]></item>

<item type="String"><![CDATA[GetVMinstanceList SUCCEED: QICOBPNS10,QICOBPTS10]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:23: currentinstance QICOBPNS10 selected to be processed. 1 remaining]]></item>

<item type="String"><![CDATA[Starting "GetVMinstancelList"]]></item>

<item type="String"><![CDATA[Starting "RemoteSSH for QICOBPNS10 instances details"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975747 (passwd="*******1051) cmdLine = "INST=QICOBPNS10;cd /tmp/install_oracle/ksh;./db_user.ksh -sid SINST -list|awk '$2~/[0-
9][0-9]*/ {print "USERS:"$1}'&& ./db_show_parameters.ksh -sid SINST -all [awk 'S1~/A[~;][A;]*;.*/{print "SPECS:"$1}'&& ./db_service_name.ksh -sid SINST -list|awk {print
"SERVICES:"$1}"]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:26 -> stdOut returned a total of 419 elements]]></item>

<item type="String"><![CDATA[FOUND on QICOBPNS10: O users + 413 specs + 5 services]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:27: currentinstance QICOBPTS10 selected to be processed. 0 remaining]]></item>

<item type="String"><![CDATA[Starting "GetVMinstancelList"]]></item>

<item type="String"><![CDATA[Starting "RemoteSSH for QICOBPTS10 instances details"]]></item>

<item type="String"><![CDATA[ssh root@s00vI9975747(passwd=*******1051) cmdLine = "INST=QICOBPTS10;cd /tmp/install_oracle/ksh; ./db_user.ksh -sid SINST -list|awk '$2~/[0-
9][0-9]*/ {print "USERS:"$1}'&& ./db_show_parameters.ksh -sid SINST -all |[awk 'S1~/A[A;][A;1*;.* /{print "SPECS:"$1}'&& ./db_service_name.ksh -sid SINST -list|awk {print
"SERVICES:"$1}"]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:30 -> stdOut returned a total of 419 elements]]></item>

<item type="String"><![CDATA[FOUND on QICOBPTS10: O users + 413 specs + 5 services]]></item>

<item type="String"><![CDATA[1/2/2018_12:7:30: QICOBPTS10 has been Processed. No more instance. Switch to "CALCUL DIFF"]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:30:838: #HHH#### CALCULATING DIFF #####HHHH]]></item>

<item type="String"><![CDATA[currentScan is 2153 long]]></item>

<item type="String"><![CDATA[PreviousScan is 836 long]]></item>

<item type="String"><![CDATA[DIIF: toAdd = 1317 elts ; toDel = 0 elts]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:31:299: ########## END OF CALCUL #iH##H#####H#H#H]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:31:339: Updating the previous scan with the current one: SUCCEED]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:31:349: Calculating updated increments]]></item>

<item type="String"><![CDATA[1/2/2018 12:7:31:379: updating the increment referential]]></item>
</variable>

